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Abstract

Video games provide rich interactive environments that have
proven to be great testbeds for AI research in areas such as
grounded language generation and reinforcement learning. In
this preliminary work, we show that commercial video games
can also be an excellent resource for interactive storytelling.
We introduce a dataset extracted from the widely acclaimed
computer role-playing game Disco Elysium: The Final Cut.
With roughly 1.1M words of dialogue spread across a com-
plex graph of possible utterances, the game provides a strong
research foundation for interactive storytelling. Furthermore,
nodes in the dialogue graph can express conditional logic that
permanently alter the game state, and thus affects reachabil-
ity in the graph. These conditions are encoded in the form of
Lua scripts written by the game’s designers. To demonstrate
the utility of the dataset, we cluster dialogue based on sim-
ilarity and linearize all possible utterances for the next turn
of dialogue into a Lua script containing a mix of natural lan-
guage and game logic. We then mask out one utterance from
the script and use a large language model to generate a plau-
sible alternative. Analyses of these generations demonstrate
the difficulty of this task and suggest future avenues for re-
search, which if successful, have the potential to profoundly
impact dialogue writing in video games.

Introduction
Interactive storytelling allows its consumers to actively
guide a story as it unfolds. Broadly speaking, this type of
storytelling takes on many forms, including tabletop role-
playing games like Dungeons and Dragons (Callison-Burch
et al. 2022), choose your own adventure books (Clark and
Smith 2021), interactive fiction (Hausknecht et al. 2020),
and narrative-driven video games. In this paper, we fo-
cus on the latter medium by collecting a dataset from the
highly-acclaimed video game Disco Elysium: The Final
Cut1 (Kurvitz et al. 2021) and applying large language mod-
els (LLMs) to generate dialogue conditioned on the game
state.

As such, our work diverges from previous AI-driven in-
teractive storytelling research. Historical approaches have
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1Currently rated the #1 PC video game of all time on
Metacritic, see https://www.metacritic.com/browse/games/score/
metascore/all/pc

explored encoding stories as graphs and deployed classical
planning algorithms (Riedl and Young 2004) to simultane-
ously incorporate user actions while staying true to authorial
intent (Mateas and Stern 2005). Similarly, while commercial
video game environments have become increasingly popular
testbeds for grounded language (Suhr et al. 2019) and rein-
forcement learning (Bellemare et al. 2012; Kempka et al.
2016), to the best of our knowledge no commercial video
games have been utilized for storytelling research.

Although Disco Elysium is a single testcase of the ideas
presented in this paper, this task is important. We envision
research using the Disco Elysium dataset to help produce
tools to suggest dialogue options during game design and
in-game systems which dynamically react to player input.
Additionally, the proposed approach is widely applicable to
narrative-driven video games. Numerous video games struc-
ture their dialogue in a manner similar to Disco Elysium as
it uses Pixel Crushers Dialogue System2, a common frame-
work for video game dialogue. Thus any successful ap-
proaches to improving dialogue in Disco Elysium can also
be applied to those games. Future work could even endeavor
to extract dialogue from more of these games to build larger,
more diverse datasets.

Disco Elysium provides an interesting dataset for
grounded language researchers because it is a large-scale
dialogue-driven game: while players control a character in
a virtual environment, the majority of a player’s interac-
tion takes the form of dialogue grounded in the current
game state. We treat Disco Elysium as a testcase for other
dialogue-driven video games and use it to extract a dataset
of dialogue paired with game state references. The extracted
dialogue is encoded as a directed graph, with certain nodes
acting as boolean gates defined by Lua scripts conditioned
on the current state of the game. Additionally, the dataset
includes explicit representations of actors, items, game vari-
ables, and individual conversations, each of which may con-
tain annotations from the game designers describing their
intent.

Given this rich dataset, we devise an approach to use
LLMs trained on a mix of code and natural language (Chen
et al. 2021; Fried et al. 2022) to diversify the game dialogue
while maintaining the designers’ vision. We first cluster sim-

2https://www.pixelcrushers.com/dialogue-system/



Figure 1: In this example taken from the intro dream sequence of Disco Elysium: The Final Cut, we first cluster dialogue nodes
by a similarity measure predicated on game state variables and spoken dialogue. Then, we linearize the next turn of dialogue in
the graph into a Lua script that contains game logic and dialogue. Finally, we <MASK> one utterance from the cluster and ask
a LLM trained on code and natural language to complete the masked dialogue.

ilar dialogue, then linearize the utterances and game state
into a Lua script, and ask a LLM to predict a masked line
of dialogue (Figure 1). We then conduct a preliminary set
of experiments using two LLMs: a finetuned GPT-3 Curie
(Brown et al. 2020) model and Codex (Chen et al. 2021)
in a few-shot setup. We compare the quality of the gener-
ated dialogue using two metrics, BLEURT (Sellam, Das, and
Parikh 2020) and a bag-of-words F1. While both metrics
indicate Codex performs the task better despite the lack of
fine-tuning, the low F1 scores indicate there is a large room
for improvement even when only predicting text clustered
by similarity.

Dataset
Disco Elysium: The Final Cut is a critically acclaimed
dialogue-driven computer roleplaying game where the
player takes on the role of a down-on-his-luck detective.
There are many genre-defining characteristics of the game
that contribute to its popularity, which also make it an excel-
lent resource for interactive storytelling research. The ma-
jority of interactions in the game world are in the form of di-
alogue, which includes interactions with not only other char-
acters but also inanimate objects in the game world (e.g., a
ceiling fan and a bathroom mirror from the first scene of the
game). Furthermore, the player character has twenty-four at-
tributes that govern in-game skills and also act to convey
internal thoughts which frequently interject commentary on
the current situation. Finally, the sheer scope of the dialogue
(Table 1), combined with the complexity of the choices and
their subsequent consequences, make this game an excellent
case study to explore interactive storytelling research within
an existing commercial video game.

We begin by extracting a catalog of all top-level enti-
ties (actors, items, conversations, dialogue entries, and game

state variables; see Table 1) from the PC version of Disco
Elysium: The Final Cut using the open source tool AssetStu-
dio.3 The game, with over 1.1M words of dialogue across
roughly 70K utterances (Table 1), is by most measures of
creative fiction one of the longest works in the genre.4

Dialogue entries contain references to the actor who is
speaking and any precondition, in the form of a boolean-
valued Lua expression, required to speak the utterance (see
the if statements in Figure 1b), e.g.,

Variable["whirling.dreamone brave"]

In addition, each dialogue entry may contain Lua statements
which alter game state (see Figure 1b), e.g.,

SetVariableValue(
"whirling.dreamone champion est",
true

)

Each top-level entity in the catalog may also contain anno-
tations used internally by the game’s designers as a way to
document their intent (see the Lua comments in Figure 1b),
likely as a way to keep aspects of the complicated story clear
during the design process, e.g.,

No DISCO TIME if you haven’t
established you’re a CHAMPION

These annotations provide a rich, natural source of context
to better explain the vast array of top-level entities (Table 1)
used throughout the game logic.

We note that one of the key challenges in using this dataset
for research is that Disco Elysium represents a single overar-
ching story. For this reason we take special care in splitting

3https://github.com/Perfare/AssetStudio
4https://gamicus.fandom.com/wiki/List of longest video

game scripts#Video games



Dataset Splits
Train Valid Test Total

89.8% 5.4% 4.7%
Utterances 65316 4143 3237 72696
Words 1001191 59877 52816 1113884
Nodes 98442 6950 5092 110484
Forks 17283 1544 964 19791
Variables 99015 6989 5132 111136

(a)
Variable Overlap Dataset Totals

Train
⋂
Valid 2897 Actors 424

Train
⋂
Test 2871 Items 259

Valid
⋂
Test 303 Conversations 610

(b) (c)

Table 1: For the Disco Elysium dataset: (a) we split the data
into training, validation, and test sets based on the number
of dialogue words, while ensuring an approximately similar
proportion of conditional dialogue forks and referenced Lua
variables; (b) we take special care to minimize the number of
referenced variable overlaps amongst the splits; (c) though
we do not attempt to disentangle Actors and Items across
splits.

the dataset into train, valid, and test splits. Considering the
high degree of interconnectedness across conversations in
the game, it is not possible to create a dialogue split with a
disjoint set of actors, items, and game state variables.

As a single variable can be referenced in multiple conver-
sations, the game’s dialogue graph implicitly forms a hyper-
graph, with hyperedges defined by Lua variables. Optimal
partitioning of a hypergraph is known to be NP-hard (Papa
and Markov 2007), and in smaller hypergraphs an exhaus-
tive enumeration can often be more efficient in practice than
specialized algorithms (Papa and Markov 2007). We attempt
to generate a 90%/5%/5% train/valid/test split of the con-
versations in the dataset, while allowing a total ϵ = 1.5%
variation from the desired splits, using branch and bound to
enumerate all valid partitions of the conversations which sat-
isfy the percentage constraints. Luckily, many distinct con-
versations are connected by one or more dialogue edges,
making it such that a handful of connected components in
the graph make up roughly 70% of the dialogue (and thus
are required to be in the training set). For the remaining di-
alogue, we opt to minimize the overlap in game variables
across splits, as they are crucial for representing conditional
dialogue. A final split of 89.8%/5.4%/4.7% is achieved with
minimal overlap in variables (Table 1).

Evaluation
To probe the current capabilities of current LLMs to suc-
ceed at the proposed task, we first cluster the dialogue nodes
to discover utterances which are similar (Figure 1a), but may
vary slightly based on the game state. Then, starting from a
given dialogue node, we linearize all dialogue nodes poten-

tially reachable in the next turn of conversation to form a Lua
script representing all possible utterances and game state al-
tering commands (Figure 1b). Finally, we mask one utter-
ance from the dialogue cluster and have the LLM (GPT-3
Curie or Codex) generate a plausible alternative (Figure 1c).

Clustering
LLMs are often poor at generating relevant continuations for
creative text (Akoury et al. 2020). For that reason, we de-
sign our preliminary experiments by clustering nodes in the
graph by similar text that only varies slightly based on game
state (see Figure 1), e.g.,

(a)

"Stop! I don’t want to hear
anything more about this
*sensation*. Take me back
to the formless, disembodied
nothing!"

(b)
"Please, no! I changed my mind!
Take me back to the formless,
disembodied nothing!"

We experiment with a number of algorithms for cluster-
ing the game’s dialogue, including the Levenshtein distance,
Jaccard index, and the Dice coefficient (equivalent to a bag-
of-words F1). We also vary the features used for clustering
by splitting the words into characters, grouping by ngrams,
and through the use of lowercasing. We conduct a manual
inspection of the various approaches to clustering, includ-
ing a hyperparameter sweep of the similarity threshold. This
inspection indicated that solely clustering based on the dia-
logue utterances would either systematically miss semanti-
cally similar text, or cluster dissimilar utterances when the
similarity threshold was made more permissive.

To combat this tendency, we additionally tried cluster-
ing nodes by inspecting the associated Lua conditions. We
first parse the Lua expression, extract identifiers (which of-
ten refer to functions) and string literals (which often re-
fer to variables). We then split the literals into their con-
stituent words (e.g., whirling.dreamone brave be-
comes whirling, dreamone, brave), before run-
ning the above battery of clustering approaches. In the end,
we find that clustering based on a combination of dialogue
and Lua expressions produced the best results, without the
need for the extra feature engineering, while only relying on
the simple Dice coefficient with a threshold d >= 0.5.

Model
Class

Prompt
Tokens

Model
Type

OpenAI API
Name

Curie 5 2048 Finetuned curie
Codex 8000 Few-Shot code-davinci-002

Table 2: Details of the models used in our experiments. As
OpenAI does not provide parameter counts or details on
finetuning, we also provide the API name for the models
to help reproducibility.

5Likely 6.7B parameters, see:
https://blog.eleuther.ai/gpt3-model-sizes/



Model Examples Tokens BLEURT F1
Curie 2,668 3,041,299 41.9 25.6
Codex 2,668 21,077,200 44.2 29.5

Table 3: Preliminary experiments over the validation set
show that few-shot Codex outperforms a finetuned Curie
model for generating context-aware dialogue.

Model Examples Copied
Curie 2,668 235
Codex 2,668 455 (8)†

Table 4: We find that both Curie and Codex occassionally
copy dialogue from the prompt, and in 8† instances Codex
directly copies a completion from the few-shot examples.

Linearization and Masking
Now that we have a set of clusters, we need to convert each
cluster into a Lua script that can be fed to a language model.
We do that by prefixing all the top-level entities (e.g. ac-
tors, conversations, and variables) referenced by the clus-
tered nodes at the top of the script, and any default value they
may have. We additionally include any annotations by the
game’s designers in the form of Lua comments. Each node
in the cluster is visited in sequential order and its Lua con-
ditions, dialogue, and any associated actions when the dia-
logue is spoken is included in the script. Lastly, we generate
all variants of each script by enumerating every clustered ut-
terance from the prompt, masking them out one-by-one, and
asking the LLM to generate the masked dialogue as its com-
pletion (see Figure 1bc). We use a prefix-suffix-mask (Don-
ahue, Lee, and Liang 2020) ordering of the masked infilling
examples rather than a suffix-prefix-mask (SPM) form, as
SPM only achieves better performance when pretraining on
billions of tokens (Bavarian, Jun, and Tezak 2022).

Experiments
We conduct experiments using two LLMs: GPT-3 Curie
and Codex (Table 2). GPT-3 Curie is a strong generation
model for natural language (Brown et al. 2020), especially
when finetuned on a downstream task, while Codex is an
extremely capable few-shot LM for code (Chen et al. 2021).
As our task contains elements of both natural language and
code, it is important to assess the capabilities of each model
paradigm.

Since the two models perform different tokenization6 and
support different context lengths, we filter the clusters, keep-
ing only those that fit the smallest context length (2048
tokens) using the GPT-3 tokenizer. We then generate all
the linearized scripts representing semantically related text
for the next turn of dialogue. After filtering and generating
masked variants of the clusters, we are left with 30,501 train-
ing examples and 2,668 validation examples.

6Codex uses a modified tokenizer that collapses whitespace
since it is commonly used in code formatting.

We finetune Curie for 1 epoch, with a batch size of 32 ex-
amples and a learning rate of 0.2× the learning rate of the
pretrained model and we weight the loss for the prompt to-
kens by 0.01. For the few-shot Codex model, we prefix each
linearized Lua script with several samples from the valida-
tion set such that they take up nearly the full context win-
dow (we reserve 100 tokens of the context for generation).
We also ensure there are no overlaps in dialogue between the
few-shot examples and the script. Consequently, each Codex
script has 7 few-shot examples on average.

We choose to measure the performance of the models on
the validation set using a bag-of-words F1, as the clustered
utterances have a large overlap with the masked text the
model is tasked with infilling. In addition, we use BLEURT
which has proven to be robust for semantic similarity of gen-
erated text (Karpinska et al. 2022). Both metrics favor Codex
slightly, though given the low F1 score, it’s clear the models
have much room for improvement on this simplified form
of our task. That is to say, naı̈vely applying our preliminary
approach to all the dialogue in the game, not just to the sub-
set of dialogue clustered via similarity, is even more likely
to fail. We also posit that Codex likely outperforms Curie
since it is a larger model that is explicitly trained on a large
corpus of code, even though it uses a few-shot approach to
inference.

Analysis
To better understand the performance difference between
the two models we also conduct a small analysis of each
model’s output. We find that both models tend to copy from
the prompt (Table 4), but Codex does it nearly twice as often.

A qualitiative inspection of the generations from the
Codex model (our best performer) seem to indicate the
model may struggle to generate plausible completions due
to a lack of historical context to the current conversation.
Our script-based prompts do not include any previous dia-
logue utterances, but rather rely only on the combination of
dialogue that can be emitted next and conditional game logic
gating those options. It is clear the models also do not make
effective use of the game designer’s annotations to fill in the
gaps. While these comments are likely useful reference for
the writers of the game, they may not contain enough con-
text alone to guide generation. Considering Codex has a very
long context window and performs better than a finetuned
Curie (Table 3), future experiments could attempt to include
previous turns of dialogue in the prompt to see if that im-
proves generation quality.

Future Directions
While these preliminary experiments provide useful in-
sights, automatic metrics of creative writing are known to
poorly correlate with human judgements (Karpinska, Ak-
oury, and Iyyer 2021). For that reason, we have already de-
veloped a webapp with an embedded Lua VM which recre-
ates the in-game dialogue system while incorporating gen-
erated dialogue from LLMs. Having a test harness separate
from the game environment allows for a controlled human
evaluation protocol. We plan an interactive user-study along
with further modeling improvements.
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